Abstract
This study deals with the design of a near-field wireless power transfer (WPT) system applied to a left ventricular assist device (LVAD) to treat patients with heart-failure problems. An LVAD is an implanted electrically driven pump connected to the heart and is traditionally powered by batteries external to the human body via a percutaneous driveline cable. The main challenge of wirelessly powering an LVAD implanted deep in the human body is to transfer relatively high power with high efficiency levels. Here the optimal design of the primary and secondary WPT coils is proposed to improve the performance of the WPT, avoiding possible safety problems of electromagnetic fields (EMF). As a main result, an average power of 5 W is continuously delivered to the LVAD by the WPT system working at 6.78 MHz with a total (DC–to–DC) efficiency of approximately 65% for the worst-case configuration.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献