Design and Analysis of an Inductive Coupling System for the Early Detection of Heart Failure

Author:

Krishnamurthy Venkataramani Raghavendiran1ORCID,Mohanarangam Krithikaa2ORCID,Lim Jongmin3ORCID,Yu Ke1ORCID,Gonuguntla Venkateswarlu4ORCID,Choi Jun Rim13

Affiliation:

1. School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

2. Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), Pune 412115, India

3. School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

4. Symbiosis Centre for Medical Image Analysis, Symbiosis International (Deemed University), Pune 412115, India

Abstract

Heart failure is a common, complex clinical syndrome with high morbidity and mortality. Hemodynamic parameter evaluation is useful for early detection, clinical outcome monitoring, timely treatment, and the overall prognosis of heart failure patients. Therefore, continuous monitoring of hemodynamic parameters helps in the evaluation of patients with suspected heart failure. The hemodynamic parameters change with respect to the contraction and expansion of the heart. Hence, in this research, two circuit-less 30 mm spherical receiver coils were implanted in both the left and right sides of the heart and an external transceiver coil was placed above the chest. The changes in the reflection coefficient of the transceiver coil at the resonant frequency changed depending on the distance between the implanted coils, allowing the contraction and expansion of the heart to be determined. This work was carried out at 13.56 MHz, considering the safety limits imposed by the FCC. The proposed reflection coefficient monitoring technique may distinguish healthy patients from heart failure and heart attack patients. The reflection coefficients at a maximum distance of 50 mm for simulation and measurement are −10.3 dB and −10.6 dB, respectively, at the resonant frequency.

Funder

Ministry of Education, Korea

Korea government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3