Map Merging with Suppositional Box for Multi-Robot Indoor Mapping

Author:

Chen BaifanORCID,Li Siyu,Zhao Haowu,Liu Limei

Abstract

For the map building of unknown indoor environment, compared with single robot, multi-robot collaborative mapping has higher efficiency. Map merging is one of the fundamental problems in multi-robot collaborative mapping. However, in the process of grid map merging, image processing methods such as feature matching, as a basic method, are challenged by low feature matching rate. Driven by this challenge, a novel map merging method based on suppositional box that is constructed by right-angled points and vertical lines is proposed. The paper firstly extracts right-angled points of suppositional box selected from the vertical point which is the intersection of the vertical line. Secondly, based on the common edge characteristics between the right-angled points, suppositional box in the map is constructed. Then the transformation matrix is obtained according to the matching pair of suppositional boxes. Finally, for matching errors based on the length of pairs, Kalman filter is used to optimize the transformation matrix. Experimental results show that this method can effectively merge map in different scenes and the successful matching rate is greater than that of other features.

Funder

National Key Research and Development Program of China

Foundation of Hubei Key Laboratory of Intelligent of Robot

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on real-time fusion of 2D raster maps based on feature point matching;Third International Conference on Electronic Information Engineering and Data Processing (EIEDP 2024);2024-07-05

2. Multi-robot real-time collaborative SLAM system based on 5G MEC framework;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

3. Research on Multi-Robot Map Merge Method Based on Prior Information in Logistics Environment;2023 China Automation Congress (CAC);2023-11-17

4. EVALUATION OF LIDAR ODOMETRY AND MAPPING BASED ON REFERENCE LASER SCANNING;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-10-19

5. Distributed 3D-Map Matching and Merging on Resource-Limited Platforms Using Tomographic Features;2023 European Conference on Mobile Robots (ECMR);2023-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3