Novel CNN-Based AP2D-Net Accelerator: An Area and Power Efficient Solution for Real-Time Applications on Mobile FPGA

Author:

Li ShuaiORCID,Sun Kuangyuan,Luo YukuiORCID,Yadav NandakishorORCID,Choi Ken

Abstract

Standard convolutional neural networks (CNNs) have large amounts of data redundancy, and the same accuracy can be obtained even in lower bit weights instead of floating-point representation. Most CNNs have to be developed and executed on high-end GPU-based workstations, for which it is hard to transplant the existing implementations onto portable edge FPGAs because of the limitation of on-chip block memory storage size and battery capacity. In this paper, we present adaptive pointwise convolution and 2D convolution joint network (AP2D-Net), an ultra-low power and relatively high throughput system combined with dynamic precision weights and activation. Our system has high performance, and we make a trade-off between accuracy and power efficiency by adopting unmanned aerial vehicle (UAV) object detection scenarios. We evaluate our system on the Zynq UltraScale+ MPSoC Ultra96 mobile FPGA platform. The target board can get the real-time speed of 30 fps under 5.6 W, and the FPGA on-chip power is only 0.6 W. The power efficiency of our system is 2.8× better than the best system design on a Jetson TX2 GPU and 1.9× better than the design on a PYNQ-Z1 SoC FPGA.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference42 articles.

1. CUDA Toolkit Documentation: Nvidia Developer Zone—CUDA C Programming Guide v8.0,2017

2. cudnn: Efficient primitives for deep learning;Chetlur;arXiv,2014

3. MALOC: A Fully Pipelined FPGA Accelerator for Convolutional Neural Networks With All Layers Mapped on Chip

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3