Abstract
Early detection and diagnosis of COVID-19, as well as the exact separation of non-COVID-19 cases in a non-invasive manner in the earliest stages of the disease, are critical concerns in the current COVID-19 pandemic. Convolutional Neural Network (CNN) based models offer a remarkable capacity for providing an accurate and efficient system for the detection and diagnosis of COVID-19. Due to the limited availability of RT-PCR (Reverse transcription-polymerase Chain Reaction) tests in developing countries, imaging-based techniques could offer an alternative and affordable solution to detect COVID-19 symptoms. This paper reviewed the current CNN-based approaches and investigated a custom-designed CNN method to detect COVID-19 symptoms from CT (Computed Tomography) chest scan images. This study demonstrated an integrated method to accelerate the process of classifying CT scan images. In order to improve the computational time, a hardware-based acceleration method was investigated and implemented on a reconfigurable platform (FPGA). Experimental results highlight the difference between various approximations of the design, providing a range of design options corresponding to both software and hardware. The FPGA-based implementation involved a reduced pre-processed feature vector for the classification task, which is a unique advantage of this particular application. To demonstrate the applicability of the proposed method, results from the CPU-based classification and the FPGA were measured separately and compared retrospectively.
Funder
American University of Ras Al Khaimah
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献