Detection of Male and Female Litchi Flowers Using YOLO-HPFD Multi-Teacher Feature Distillation and FPGA-Embedded Platform

Author:

Lyu Shilei123,Zhao Yawen12,Liu Xueya12,Li Zhen123,Wang Chao4,Shen Jiyuan4

Affiliation:

1. College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China

2. Pazhou Lab, Guangzhou 510330, China

3. Division of Citrus Machinery, China Agriculture Research System of MOF and MARA, Guangzhou 510642, China

4. College of Horticulture, South China Agricultural University, Guangzhou 510642, China

Abstract

Litchi florescence has large flower spikes and volume; reasonable control of the ratio of male to female litchi flowers is the key operational aspect of litchi orchards for preserving quality and increasing production. To achieve the rapid detection of male and female litchi flowers, reduce manual statistical errors, and meet the demand for accurate fertilizer regulation, an intelligent detection method for male and female litchi flowers suitable for deployment to low-power embedded platforms is proposed. The method uses multi-teacher pre-activation feature distillation (MPFD) and chooses the relatively complex YOLOv4 and YOLOv5-l as the teacher models and the relatively simple YOLOv4-Tiny as the student model. By dynamically learning the intermediate feature knowledge of the different teacher models, the student model can improve its detection performance by meeting the embedded platform application requirements such as low power consumption and real-time performance. The main objectives of this study are as follows: optimize the distillation position before the activation function (pre-activation) to reduce the feature distillation loss; use the LogCosh-Squared function as the distillation distance loss function to improve distillation performance; adopt the margin-activation method to improve the features of the teacher model passed to the student model; and propose to adopt the Convolution and Group Normalization (Conv-GN) structure for the feature transformation of the student model to prevent effective information loss. Moreover, the distilled student model is quantified and ported for deployment to a field-programmable gate array (FPGA)-embedded platform to design and implement a fast, intelligent detection system for male and female litchi flowers. The experimental results show that compared with an undistilled student model, the mAP of the student model obtained after MPFD feature distillation is improved by 4.42 to 94.21%; the size of the detection model ported and deployed to the FPGA-embedded platform is 5.91 MB, and the power consumption is only 10 W, which is 73.85% and 94.54% lower than that of the detection models on the server and PC platforms, respectively, and it can better meet the application requirements of rapid detection and accurate statistics of male and female litchi flowers.

Funder

National Natural Science Foundation of China

General program of Guangdong Natural Science Foundation

Special projects for key fields of colleges and universities in Guangdong Province

China Agriculture Research System of MOF and MARA

Basic and Applied Basic Research Project of Guangzhou Basic Research Plan

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3