Optimization Considerations for Short Channel Poly-Si 1T-DRAM

Author:

Yoo Songyi,Sun Woo-KyungORCID,Shin HyungsoonORCID

Abstract

Capacitorless one-transistor dynamic random-access memory cells that use a polysilicon body (poly-Si 1T-DRAM) have been studied to overcome the scaling issues of conventional one-transistor one-capacitor dynamic random-access memory (1T-1C DRAM). Generally, when the gate length of a silicon-on-insulator (SOI) structure metal-oxide-silicon field-effect transistor (MOSFET) is reduced, its body thickness is reduced in order to suppress the short-channel effects (SCEs). TCAD device simulations were used to investigate the transient performance differences between thin and thick-body poly-Si DRAMs to determine whether reduced body thickness is also appropriate for those devices. Analysis of the simulation results revealed that operating bias conditions are as important as body thickness in 1T-DRAM operation. Since a thick-body device has more trapped hole charge in its grain boundary (GB) than a thin-body device in both the “0” and “1” states, the transient performance of a thick-body device is better than a thin-body device regardless of the Write”1” drain voltage. We also determined that the SCEs in the memory cells can be improved by lowering the Write”1” drain voltage. We conclude that an optimization method for the body thickness and voltage conditions that considers both the cell’s SCEs and its transient performance is necessary for its development and application.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3