Abstract
A capacitorless one-transistor dynamic random-access memory device (1T-DRAM) is proposed to resolve the scaling problem in conventional one-transistor one-capacitor random-access memory (1T-1C-DRAM). Most studies on 1T-DRAM focus on device-level operation to replace 1T-1C-DRAM. To utilize 1T-DRAM as a memory device, we must understand its circuit-level operation, in addition to its device-level operation. Therefore, we studied the memory performance depending on device location in an array circuit and the circuit configuration by using the 1T-DRAM structure reported in the literature. The simulation results show various disturbances and their effects on memory performance. These disturbances occurred because the voltages applied to each device during circuit operation are different. We analyzed the voltage that should be applied to each voltage line in the circuit to minimize device disturbance and determine the optimized bias condition and circuit structure to achieve a large sensing margin and realize operation as a memory device. The results indicate that the memory performance improves when the circuit has a source line and the bias conditions of the devices differ depending on the write data at the selected device cell. Therefore, the sensing margin of the 1T-DRAM used herein can expectedly be improved by applying the proposed source line (SL) structure.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering