Uncertainty-Driven Ontology for Decision Support System in Air Transport

Author:

Insaurralde Carlos C.,Blasch Erik P.ORCID,Costa Paulo C. G.,Sampigethaya Krishna

Abstract

Recent electronics advances for air transport have increased aircraft density, volume, and frequency in the airspace. These advances come with control requirements for precise navigation, coordinated Air Traffic Management (ATM) or Unmanned aircraft system Traffic Management (UTM), and proactive security. The tight tolerances of aircraft control necessitate management of spatial uncertainty, timeliness precision, and confidence assessment, which have, respectively, variance, reliability, and veracity situation awareness and assessment metrics. Meeting such airspace requirements involves the ability to evaluate how those metrics impact ATM/UTM operations, making the complex interrelationships between them a key aspect for coping with the fast worldwide growth of air transport. To support such growth, ontologies have been proposed as a promising technology for making such interrelationships explicit, while facilitating communication between avionics devices. This paper investigates the use of ontologies in support of electronic ATM/UTM operations, highlighting the use of Uncertainty Representation and the Reasoning Evaluation Framework (URREF) in realizing the ability for Air Traffic Controllers (ATCs) to semantically communicate with aircraft operators concerning physical airspace coordination. Using Avionics Analytics Ontology (AAO) endowed with the URREF, application examples based on two airspace situations are presented. Example results for northeast coast of Brazil atmospheric volcanic ash as well as for the Eyjafjallajokull volcano eruption show a 65–80% success in providing warnings to ATCs for airspace control. The paper demonstrates that an ontology-based UTM enhances the capability and accuracy of an ATM to suggest rerouting in the presence of remarkably deteriorated weather conditions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Value-based sensor and information fusion;Signal Processing, Sensor/Information Fusion, and Target Recognition XXXIII;2024-06-07

2. Digital twin meets information fusion: panel summary;Signal Processing, Sensor/Information Fusion, and Target Recognition XXXIII;2024-06-07

3. Avionics Analytics Ontology Preliminary Flight Test Results for Decision Support;2024 Integrated Communications, Navigation and Surveillance Conference (ICNS);2024-04-23

4. Data Mining from Knowledge Cases of COVID-19;WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS;2024-02-20

5. Human-machine cooperative AI decision-making with heterogeneous data;Signal Processing, Sensor/Information Fusion, and Target Recognition XXXII;2023-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3