Integration Strategy and Tool between Formal Ontology and Graph Database Technology

Author:

Ferilli StefanoORCID

Abstract

Ontologies, and especially formal ones, have traditionally been investigated as a means to formalize an application domain so as to carry out automated reasoning on it. The union of the terminological part of an ontology and the corresponding assertional part is known as a Knowledge Graph. On the other hand, database technology has often focused on the optimal organization of data so as to boost efficiency in their storage, management and retrieval. Graph databases are a recent technology specifically focusing on element-driven data browsing rather than on batch processing. While the complementarity and connections between these technologies are patent and intuitive, little exists to bring them to full integration and cooperation. This paper aims at bridging this gap, by proposing an intermediate format that can be easily mapped onto the formal ontology on one hand, so as to allow complex reasoning, and onto the graph database on the other, so as to benefit from efficient data handling.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference44 articles.

1. What Is the Difference between an Ontology and a Knowledge Graph? (White Paper);Schrader,2021

2. https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/

3. Knowledge Graphs

4. Industry-scale knowledge graphs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3