Abstract
As the core component of smart grids, advanced metering infrastructure (AMI) provides the communication and control functions to implement critical services, which makes its security crucial to power companies and customers. An intrusion detection system (IDS) can be applied to monitor abnormal information and trigger an alarm to protect AMI security. However, existing intrusion detection models exhibit a low performance and are commonly trained on cloud servers, which pose a major threat to user privacy and increase the detection delay. To solve these problems, we present a transformer-based intrusion detection model (Transformer-IDM) to improve the performance of intrusion detection. In addition, we integrate 5G technology into the AMI system and propose a hierarchical federated learning intrusion detection system (HFed-IDS) to collaboratively train Transformer-IDM to protect user privacy in the core networks. Finally, extensive experimental results using a real-world intrusion detection dataset demonstrate that the proposed approach is superior to other existing approaches in terms of detection accuracy and communication cost for an IDS.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献