FedAvg-P: Performance-Based Hierarchical Federated Learning-Based Anomaly Detection System Aggregation Strategy for Advanced Metering Infrastructure

Author:

Alshede Hend12,Jambi Kamal1,Nassef Laila1ORCID,Alowidi Nahed1ORCID,Fadel Etimad1ORCID

Affiliation:

1. Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Self-Development Skills Department, Common First Year Deanship, King Saud University, Riyadh 12211, Saudi Arabia

Abstract

Advanced metering infrastructures (AMIs) aim to enhance the efficiency, reliability, and stability of electrical systems while offering advanced functionality. However, an AMI collects copious volumes of data and information, making the entire system sensitive and vulnerable to malicious attacks that may cause substantial damage, such as a deficit in national security, a disturbance of public order, or significant economic harm. As a result, it is critical to guarantee a steady and dependable supply of information and electricity. Furthermore, storing massive quantities of data in one central entity leads to compromised data privacy. As such, it is imperative to engineer decentralized, federated learning (FL) solutions. In this context, the performance of participating clients has a significant impact on global performance. Moreover, FL models have the potential for a Single Point of Failure (SPoF). These limitations contribute to system failure and performance degradation. This work aims to develop a performance-based hierarchical federated learning (HFL) anomaly detection system for an AMI through (1) developing a deep learning model that detects attacks against this critical infrastructure; (2) developing a novel aggregation strategy, FedAvg-P, to enhance global performance; and (3) proposing a peer-to-peer architecture guarding against a SPoF. The proposed system was employed in experiments on the CIC-IDS2017 dataset. The experimental results demonstrate that the proposed system can be used to develop a reliable anomaly detection system for AMI networks.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3