Balancing Data Privacy and 5G VNFs Security Monitoring: Federated Learning with CNN + BiLSTM + LSTM Model

Author:

Maiga Abdoul-Aziz1ORCID,Ataro Edwin2,Githinji Stanley3

Affiliation:

1. Pan African University, Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya

2. Department of Electrical and Electronic Engineering, Technical University of Kenya, Nairobi, Kenya

3. Department of Computing, United States International University-Africa (USIU-A), Nairobi, Kenya

Abstract

The cloudification of telecommunication network functions with 5G is a novelty that offers higher performance than that of previous generations. However, these virtual network functions (VNFs) are exposed to internet threats when hosted in the cloud, resulting in new security challenges. Another fact is that many VNFs vendors with different security policies will be implied in 5G deployment, creating a heterogeneous 5G network. The authorities also require data privacy enhancement in 5G deployment and there is the fact that mobile operators need to inspect data for malicious traffic detection. In this situation, how can network traffic inspections be conducted effectively without infringing on data privacy? This study addresses this gap by proposing a novel state-of-the-art hybrid deep neural network that combines a convolutional neural network (CNN) stacked to bidirectional long short-term memory (BiLSTM) and unidirectional long short-term memory (LSTM) for the deep inspection of network flow for malicious traffic detection. The approach utilizes federated learning (FL) to facilitate multiple VNFs vendors to collaboratively train the proposed model without sharing VNFs’ raw data, which can mitigate the risk of data privacy violation. The proposed framework incorporates transport layer security (TLS) encryption to prevent data tempering or man-in-the-middle attacks between VNFs. The framework was validated through simulation using open-access benchmark datasets (InSDN and CICIDS2017). They achieved 99.99% and 99.58% accuracy and 0.048% and 0.617% false-positive rates for the InSDN and CICIDS2017 datasets, respectively, for FL. This study demonstrates the potential of hybrid deep learning-based FL for heterogeneous 5G network VNFs security monitoring.

Funder

African Union

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3