Machine Learning-Based Soft-Error-Rate Evaluation for Large-Scale Integrated Circuits

Author:

Song Ruiqiang12ORCID,Shao Jinjin1ORCID,Chi Yaqing12ORCID,Liang Bin12,Chen Jianjun12,Wu Zhenyu12ORCID

Affiliation:

1. College of Computer, National University of Defense Technology, Changsha 410073, China

2. Key Laboratory of Advanced Microprocessor Chips and Systems, Changsha 410073, China

Abstract

Transient pulses generated by high-energy particles can cause soft errors in circuits, resulting in spacecraft malfunctions and posing serious threats to the normal operation of spacecraft. For integrated circuits used in space applications, it is necessary to first evaluate soft errors caused by transient pulses. Conventional soft-error-rate evaluation tools are designed to simulate the generation of transient pulses using many accurate models, while the propagation of transient pulses is primarily simulated by circuit-level simulation tools. Due to the limitations of simulation tools, conventional evaluation approaches are limited to the circuit scale. The simulation runtime is unbearable for large-scale integrated circuits. This paper presents an approach for evaluating the soft error rate using machine learning. A back propagation neural network is implemented in the proposed approach. It helps to determine the probability of transient pulse propagation. Compared with the conventional soft-error-rate evaluation results, the proposed approach demonstrates a strong correlation in both trend and magnitude. The average difference between the results obtained using the proposed evaluation method and the experimental results is 23.5%, which is 7.5% higher than that between the results obtained using the conventional evaluation method and the experimental results. Compared to the conventional evaluation method, the proposed approach improves the runtime by an order of magnitude. The proposed approach also benefits the locating of highly sensitive circuit nodes in large-scale integrated circuits. Circuit design and radiation hardening are both useful applications.

Funder

National Natural Science Foundation of China

National University of Defense Technology research project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3