Research on SLAM and Path Planning Method of Inspection Robot in Complex Scenarios

Author:

Wang Xiaohui1,Ma Xi1,Li Zhaowei1

Affiliation:

1. School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China

Abstract

Factory safety inspections are crucial for maintaining a secure production environment. Currently, inspections are predominantly performed manually on a regular basis, leading to low efficiency and a high workload. Utilizing inspection robots can significantly improve the reliability and efficiency of these tasks. The development of robot localization and path planning technologies ensures that factory inspection robots can autonomously complete their missions in complex environments. In response to the application requirements of factory inspections, this paper investigates mapping, localization, and path planning methods for robots. Considering the limitations of cameras and laser sensors due to their inherent characteristics, as well as their varying applicability in different environments, this paper proposes SLAM application systems based on multi-line laser radar and visual perception for diverse scenarios. To address the issue of low efficiency in inspection tasks, a hybrid path planning algorithm that combines the A-star algorithm and time elastic band method is introduced. This approach effectively resolves the problem of path planning becoming trapped in local optima in complex environments, subsequently enhancing the inspection efficiency of robots. Experimental results demonstrate that the designed SLAM and path planning methods can satisfy the inspection requirements of robots in complex scenarios, exhibiting excellent reliability and stability.

Funder

Graduate Education and Teaching Quality Improvement Project of Beijing University of Architecture and Architecture

Lecturer Support Plan Project of Beijing University of Architecture and Architecture

Open Project of Anhui Provincial Key Laboratory of Intelligent Building and Building Energy Efficiency, Anhui Jianzhu University

BUCEA Post Graduate Innovation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3