A Construction Optimization for Laser SLAM Based on Odometer Constraint Fusion

Author:

Huang Haojun,Yang Puxian,Cai Shengqing,Li Jixiang,Zheng Yuda,Zou Tengyue

Abstract

The traditional laser SLAM (Simultaneous Localization and Mapping) algorithm uses the global relative poses and local ones to form residual blocks. Its constructed map is not smooth enough and the constraint construction is too simplex under some special scenarios. Thus, this paper proposes an odometer constraint fusion method called FOSLAM (Fusion Odometer SLAM) to construct residual blocks between constrains and solve the nonlinear least squares by Ceres. The effectiveness and accuracy of this method have been verified through comparative experiments. Experimental results showed that without increasing the time and space complexity, by involving the odometer constraint into the SLAM optimization process, the convergence of scan matching scores can be improved and the constructed grid map edges are smoother and the jagged phenomenon can be reduced. Under sophisticated scene, FOSLAM is able to acquire more accurate maps and laser odometer trajectory than Cartographer method. Therefore, it is suitable to be used on indoor robot for cleaning and inspection and can be further deployed on autonomous unmanned vehicles involving spatial visualization and neuro-heuristic guidance.

Publisher

Kaunas University of Technology (KTU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3