A 1.8 V Low-Power Low-Noise High Tunable Gain TIA for CMOS Integrated Optoelectronic Biomedical Applications

Author:

Di Patrizio Stanchieri Guido,De Marcellis AndreaORCID,Battisti Graziano,Faccio Marco,Palange Elia,Guler Ulkuhan

Abstract

This paper reports on a novel solution for a transimpedance amplifier (TIA) specifically designed as an analog conditioning circuit for low-voltage, low-power, wearable, portable and implantable optoelectronic integrated sensor systems in biomedical applications. The growing use of sensors in all fields of industry, biomedicine, agriculture, environment analysis, workplace security and safety, needs the development of small sensors with a reduced number of electronic components to be easily integrated in the standard CMOS technology. Especially in biomedicine applications, reduced size sensor systems with small power consumption are of paramount importance to make them non-invasive, comfortable tools for patients to be continuously monitored even with personalized therapeutics and/or that can find autonomous level of life using prosthetics. The proposed new TIA architecture has been designed at transistor level in TSMC 0.18 μm standard CMOS technology with the aim to operate with nanoampere input pulsed currents that can be generated, for example, by Si photodiodes in optical sensor systems. The designed solution operates at 1.8 V single supply voltage with a maximum power consumption of about 36.1 μW and provides a high variable gain up to about 124 dBΩ (with fine- and coarse-tuning capabilities) showing wide bandwidth up to about 1.15 MHz and low-noise characteristics with a minimum noise floor level down to about 0.39 pA/Hz. The overall circuit is described in detail, and its main characteristics and performances have been analyzed by performing accurate post-layout simulations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3