A 180 nm CMOS Integrated Optoelectronic Sensing System for Biomedical Applications

Author:

Di Patrizio Stanchieri Guido,De Marcellis AndreaORCID,Faccio MarcoORCID,Palange Elia,Battisti GrazianoORCID,Guler Ulkuhan

Abstract

This paper reports on a CMOS fully integrated optoelectronic sensing system composed of a Si photodiode and a transimpedance amplifier acting as the electronic analog front-end for the conditioning of the photocurrent generated by the photodiode. The proposed device has been specifically designed and fabricated for wearable/portable/implantable biomedical applications. The massive employment of sensor systems in different industrial and medical fields requires the development of small sensing devices that, together with suitable electronic analog front ends, must be designed to be integrated into proper standard CMOS technologies. Concerning biomedical applications, these devices must be as small as possible, making them non-invasive, comfortable tools for patients and operating with a reduced supply voltage and power consumption. In this sense, optoelectronic solutions composed of a semiconductor light source and a photodiode fulfill these requirements while also ensuring high compatibility with biological tissues. The reported optoelectronic sensing system is implemented and fabricated in TSMC 180 nm integrated CMOS technology and combines a Si photodiode based on a PNP junction with a Si area of 0.01 mm2 and a transimpedance amplifier designed at a transistor level requiring a Si area of 0.002 mm2 capable to manage up to nanoampere input currents generated by the photodiode. The transimpedance amplifier is powered at a 1.8 V single supply showing a maximum power consumption of about 54 μW, providing a high transimpedance gain that is tunable up to 123 dBΩ with an associated bandwidth of about 500 kHz. The paper reports on both the working principle of the developed ASIC and the experimental measurements for its full electrical and optoelectronic characterizations. Moreover, as case-examples of biomedical applications, the proposed integrated sensing system has also been validated through the optical detection of emulated standard electrocardiography and photoplethysmography signal patterns.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3