VerSA: Versatile Systolic Array Architecture for Sparse and Dense Matrix Multiplications

Author:

Seo Juwon1,Kong Joonho1ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

A key part of modern deep neural network (DNN) applications is matrix multiplication. As DNN applications are becoming more diverse, there is a need for both dense and sparse matrix multiplications to be accelerated by hardware. However, most hardware accelerators are designed to accelerate either dense or sparse matrix multiplication. In this paper, we propose VerSA, a versatile systolic array architecture for both dense and sparse matrix multiplications. VerSA employs intermediate paths and SRAM buffers between the rows of the systolic array (SA), thereby enabling an early termination in sparse matrix multiplication with a negligible performance overhead when running dense matrix multiplication. When running sparse matrix multiplication, 256 × 256 VerSA brings performance (i.e., an inverse of execution time) improvement and energy saving by 1.21×–1.60× and 7.5–30.2%, respectively, when compared to the conventional SA. When running dense matrix multiplication, VerSA results in only a 0.52% performance overhead compared to the conventional SA.

Funder

National Research Foundation of Korea

Samsung Electronics Co., Ltd.

IC Design Education Center

Publisher

MDPI AG

Reference26 articles.

1. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., and Borchers, A. (2017, January 24–28). In-Datacenter Performance Analysis of a Tensor Processing Unit. Proceedings of the 44th Annual International Symposium on Computer Architecture, Toronto, ON, Canada.

2. Jouppi, N.P., Hyun Yoon, D., Ashcraft, M., Gottscho, M., Jablin, T.B., Kurian, G., Laudon, J., Li, S., Ma, P., and Ma, X. (2021, January 14–18). Ten Lessons From Three Generations Shaped Google’s TPUv4i: Industrial Product. Proceedings of the 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain.

3. Jouppi, N., Kurian, G., Li, S., Ma, P., Nagarajan, R., Nai, L., Patil, N., Subramanian, S., Swing, A., and Towles, B. (2023, January 17–21). TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings. Proceedings of the 50th Annual International Symposium on Computer Architecture, Orlando, FL, USA.

4. Pal, S., Beaumont, J., Park, D.H., Amarnath, A., Feng, S., Chakrabarti, C., Kim, H.S., Blaauw, D., Mudge, T., and Dreslinski, R. (2018, January 24–28). OuterSPACE: An Outer Product Based Sparse Matrix Multiplication Accelerator. Proceedings of the 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), Vienna, Austria.

5. Gondimalla, A., Chesnut, N., Thottethodi, M., and Vijaykumar, T.N. (2019, January 12–16). SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks. Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, Columbus, OH, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3