Numerical Analysis on Effective Mass and Traps Density Dependence of Electrical Characteristics of a-IGZO Thin-Film Transistors

Author:

Park Jihwan,Kim Do-Kyung,Park Jun-Ik,Kang In Man,Jang JaewonORCID,Kim Hyeok,Lang PhilippeORCID,Bae Jin-HyukORCID

Abstract

We have investigated the effect of electron effective mass (me*) and tail acceptor-like edge traps density (NTA) on the electrical characteristics of amorphous-InGaZnO (a-IGZO) thin-film transistors (TFTs) through numerical simulation. To examine the credibility of our simulation, we found that by adjusting me* to 0.34 of the free electron mass (mo), we can preferentially derive the experimentally obtained electrical properties of conventional a-IGZO TFTs through our simulation. Our initial simulation considered the effect of me* on the electrical characteristics independent of NTA. We varied the me* value while not changing the other variables related to traps density not dependent on it. As me* was incremented to 0.44 mo, the field-effect mobility (µfe) and the on-state current (Ion) decreased due to the higher sub-gap scattering based on electron capture behavior. However, the threshold voltage (Vth) was not significantly changed due to fixed effective acceptor-like traps (NTA). In reality, since the magnitude of NTA was affected by the magnitude of me*, we controlled me* together with NTA value as a secondary simulation. As the magnitude of both me* and NTA increased, µfe and Ion deceased showing the same phenomena as the first simulation. The magnitude of Vth was higher when compared to the first simulation due to the lower conductivity in the channel. In this regard, our simulation methods showed that controlling me* and NTA simultaneously would be expected to predict and optimize the electrical characteristics of a-IGZO TFTs more precisely.

Funder

Ministry of Science, ICT and Future Planning

Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3