Performance Degradation of Nanofilament Switching Due to Joule Heat Dissipation

Author:

Al-Mamun Mohammad Shah,Orlowski Marius K.

Abstract

When a memory cell of a Resistive Random Access Memory (ReRAM) crossbar array is switched repeatedly, a considerable amount of Joule heat is dissipated in the cell, and the heat may spread to neighboring cells that share one of the electrode lines with the heat source device. The remote heating of a probed memory cell by another cell allows separating the influence of temperature effects from the impact of the electric field on the resistive switching kinetics. We find that the cell-to-cell heat transfer causes severe degradation of electrical performance of the unheated neighboring cells. A metric for the thermal degradation of the I–V characteristics is established by a specific conditioning of a so-called “marginal” device used as a temperature-sensitive probe of electrical performance degradation. We find that even neighboring cells with no common metal electrode lines with the heated cell suffer substantial electrical performance degradation provided that intermediate cells of the array are set into a conductive state establishing a continuous thermal path via nanofilaments between the heated and probed cells. The cell-to-cell thermal cross-talk poses a serious electro-thermal reliability problem for the operation of a memory crossbar array requiring modified write/erase algorithms to program the cells (a thermal sneak path effect). The thermal cross-talk appears to be more severe in nanometer-sized memory arrays even if operated with ultra-fast, nanosecond-wide voltage/current pulses.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inertness and Other Properties of Thin Ruthenium Electrodes in ReRAM Applications;Ruthenium - Materials Properties, Device Characterizations, and Advanced Applications;2023-12-20

2. Thermal Reliability Issues in ReRAM Memory Arrays;Memristors - the Fourth Fundamental Circuit Element - Theory, Device, and Applications [Working Title];2023-09-05

3. A physics-based compact model of thermal resistance in RRAMs;Solid-State Electronics;2023-06

4. Impact of Surface Roughness and Material Properties of Inert Electrodes on the Threshold Voltages and Their Distributions of ReRAM Memory Cells;ECS Journal of Solid State Science and Technology;2022-10-01

5. Electron tunneling between vibrating atoms in a copper nano-filament;Scientific Reports;2021-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3