Affiliation:
1. College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, China
2. South Sichuan Center for Applied Mathematics, Zigong 643000, China
Abstract
Traveling salesman problems (TSPs) are well-known combinatorial optimization problems, and most existing algorithms are challenging for solving TSPs when their scale is large. To improve the efficiency of solving large-scale TSPs, this work presents a novel adaptive layered clustering framework with improved genetic algorithm (ALC_IGA). The primary idea behind ALC_IGA is to break down a large-scale problem into a series of small-scale problems. First, the k-means and improved genetic algorithm are used to segment the large-scale TSPs layer by layer and generate the initial solution. Then, the developed two phases simplified 2-opt algorithm is applied to further improve the quality of the initial solution. The analysis reveals that the computational complexity of the ALC_IGA is between O(nlogn) and O(n2). The results of numerical experiments on various TSP instances indicate that, in most situations, the ALC_IGA surpasses the compared two-layered and three-layered algorithms in convergence speed, stability, and solution quality. Specifically, with parallelization, the ALC_IGA can solve instances with 2×105 nodes within 0.15 h, 1.4×106 nodes within 1 h, and 2×106 nodes in three dimensions within 1.5 h.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献