Balanced k-means revisited

Author:

de Maeyer Rieke1,Sieranoja Sami2,Fränti Pasi2

Affiliation:

1. Saarland Informatics Campus, Saarland University, Saarbrücken, Germany

2. Machine Learning Group, School of Computing, University of Eastern Finland, Joensuu, Finland

Abstract

<abstract><p>The $ k $-means algorithm aims at minimizing the variance within clusters without considering the balance of cluster sizes. Balanced $ k $-means defines the partition as a pairing problem that enforces the cluster sizes to be strictly balanced, but the resulting algorithm is impractically slow $ \mathcal{O}(n^3) $. Regularized $ k $-means addresses the problem using a regularization term including a balance parameter. It works reasonably well when the balance of the cluster sizes is a mandatory requirement but does not generalize well for soft balance requirements. In this paper, we revisit the $ k $-means algorithm as a two-objective optimization problem with two goals contradicting each other: to minimize the variance within clusters and to minimize the difference in cluster sizes. The proposed algorithm implements a balance-driven variant of $ k $-means which initially only focuses on minimizing the variance but adds more weight to the balance constraint in each iteration. The resulting balance degree is not determined by a control parameter that has to be tuned, but by the point of termination which can be precisely specified by a balance criterion.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference47 articles.

1. F. Kovács, C. Legány, A. Babos, Cluster validity measurement techniques, Proceedings of the 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, (2006).

2. A. K. Jain, Data clustering: 50 years beyond k-means, Pattern Recogn. Lett., 31 (2010), 651-666. https://doi.org/10.1016/j.patrec.2009.09.011

3. X. Wu, V. Kumar, R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, et al., Top 10 algorithms in data mining, Knowl. Inf. Syst., 14 (2007), 1-37. https://doi.org/10.1007/s10115-007-0114-2

4. S. P. Lloyd, Least squares quantization in pcm, IEEE T. Inform. Theory, 28 (1982), 129-137. https://doi.org/10.1109/TIT.1982.1056489

5. E. W. Forgy, Cluster analysis of multivariate data: efficiency versus interpretability of classifications, Biometrics, 21 (1965), 768-769.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3