An Active Distribution Grid Exceedance Testing and Risk-Planning Simulation Based on Carbon Capture and Multisource Data from the Power Internet of Things

Author:

Wu Jinghan1,Wang Kun2,Wang Tianhao2,Ma Shiqian2,Gong Hansen1,Hu Zhijian1ORCID,Gong Qingwu1

Affiliation:

1. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

2. Electric Power Research Institute, State Grid Tianjin Electric Power Company, Tianjin 300384, China

Abstract

In order to achieve peak carbon and carbon neutrality targets, a high number of distributed power sources have been connected to distribution networks. How to realize the planning of a distribution network containing integrated energy under the condition of carbon capture and complete the exceedance test of the distribution network under the condition of accessing a large number of distributed generators has become an urgent problem. To solve the above problem while promoting sustainable development, this work proposes an active distribution network risk-planning model based on multisource data from carbon capture and the Power Internet of Things. The model calculates the semi-invariants of each order of the node state vectors and branch circuit current vectors and then utilizes Gram–Charlier-level expansion to obtain the exceeding probability density function and the probability distribution functions of the node voltages and line powers in the distribution network. Combined with multisource data, an active distribution network with an integrated energy system designed for carbon capture was modeled. According to the risk scenario of the distribution network, the nonconvex constraints in the model were simplified by second-order cone relaxation, and the optimal planning scheme of the distribution network was solved by combining the Gurobi solver with the risk index as the first-level objective and the economic benefit as the second-level objective. The simulation results of a coupled network consisting of a 39-node distribution network and an 11-node transportation network verified the effectiveness of the proposed model.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3