Machine Learning-Based Intrusion Detection for Rare-Class Network Attacks

Author:

Yang Yu1,Gu Yuheng1ORCID,Yan Yu1

Affiliation:

1. College of Information Engineering, Chinese People’s Armed Police Force Engineering University, Xi’an 710086, China

Abstract

Due to the severe imbalance in the quantities of normal samples and attack samples, as well as among different types of attack samples, intrusion detection systems suffer from low detection rates for rare-class attack data. In this paper, we propose a geometric synthetic minority oversampling technique based on the optimized kernel density estimation algorithm. This method can generate diverse rare-class attack data by learning the distribution of rare-class attack data while maintaining similarity with the original sample features. Meanwhile, the balanced data is input to a feature extraction module built upon multiple denoising autoencoders, reducing information redundancy in high-dimensional data and improving the detection performance for unknown attacks. Subsequently, a soft-voting ensemble learning technique is utilized for multi-class anomaly detection on the balanced and dimensionally reduced data. Finally, an intrusion detection system is constructed based on data preprocessing, imbalance handling, feature extraction, and anomaly detection modules. The performance of the system was evaluated using two datasets, NSL-KDD and N-BaIoT, achieving 86.39% and 99.94% multiclassification accuracy, respectively. Through ablation experiments and comparison with the baseline model, it is found that the inherent limitations of a single machine-learning model directly affect the accuracy of the intrusion detection system, while the superiority of the proposed multi-module model in detecting unknown attacks and rare classes of attack traffic is demonstrated.

Funder

Armed Police Force Military Theory Research Program Subjects

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3