Securing a Smart Home with a Transformer-Based IoT Intrusion Detection System

Author:

Wang Minxiao1ORCID,Yang Ning2ORCID,Weng Ning1ORCID

Affiliation:

1. The Computer Engineering Program in the School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, IL 62901, USA

2. The Information Technology Program in the School of Computing, Southern Illinois University, Carbondale, IL 62901, USA

Abstract

Machine learning (ML)-based Network Intrusion Detection Systems (NIDSs) can classify each network’s flow behavior as benign or malicious by detecting heterogeneous features, including both categorical and numerical features. However, the present ML-based NIDSs are deemed insufficient in terms of their ability to generalize, particularly in changing network environments such as the Internet of Things (IoT)-based smart home. Although IoT devices add so much to home comforts, they also introduce potential risks and vulnerabilities. Recently, many NIDS studies on other IoT scenarios, such as the Internet of Vehicles (IoV) and smart cities, focus on utilizing the telemetry data of IoT devices for IoT intrusion detection. Because when IoT devices are under attack, their abnormal telemetry data values can reflect the anomaly state of those devices. Those telemetry data-based IoT NIDS methods detect intrusion events from a different view, focusing on the attack impact, from the traditional network traffic-based NIDS, which focuses on analyzing attack behavior. The telemetry data-based NIDS is more suitable for IoT devices without built-in security mechanisms. Considering the smart home IoT scenario, which has a smaller scope and a limited number of IoT devices compared to other IoT scenarios, both NIDS views can work independently. This motivated us to propose a novel ML-based NIDS to combine the network traffic-based and telemetry data-based NIDS together. In this paper, we propose a Transformer-based IoT NIDS method to learn the behaviors and effects of attacks from different types of data that are generated in the heterogeneous IoT environment. The proposed method utilizes a self-attention mechanism to learn contextual embeddings for input network features. Based on the contextual embeddings, our method can solve the feature set challenge, including both continuous and categorical features. Our method is the first to utilize both network traffic data and IoT sensors’ telemetry data at the same time for intrusion detection. Experiments reveal the effectiveness of our method on a realistic network traffic intrusion detection dataset named ToN_IoT, with an accuracy of 97.95% for binary classification and 95.78% for multiple classifications on pure network data. With the extra IoT information, the performance of our method has been improved to 98.39% and 97.06%, respectively. A comparative study with existing works shows that our method can achieve state-of-the-art performance on the ToN_IoT dataset.

Funder

US National Science Foundation

Dr. Yang’s SIU startup fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3