A Novel Hybrid Feature Selection with Cascaded LSTM: Enhancing Security in IoT Networks

Author:

Sundaram Karthic1ORCID,Natarajan Yuvaraj1ORCID,Perumalsamy Anitha2,Yusuf Ali Ahmed Abdi3

Affiliation:

1. Department of Computer Science and Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India

2. Department of Computer Science and Engineering, Coimbatore Institute of Technology, Coimbatore 641014, India

3. Department of Electrical Engineering, University of Johannesburg, Johannesburg 2092, South Africa

Abstract

The rapid growth of the Internet of Things (IoT) has created a situation where a huge amount of sensitive data is constantly being created and sent through many devices, making data security a top priority. In the complex network of IoT, detecting intrusions becomes a key part of strengthening security. Since IoT environments can be easily affected by a wide range of cyber threats, intrusion detection systems (IDS) are crucial for quickly finding and dealing with potential intrusions as they happen. IDS datasets can have a wide range of features, from just a few to several hundreds or even thousands. Managing such large datasets is a big challenge, requiring a lot of computer power and leading to long processing times. To build an efficient IDS, this article introduces a combined feature selection strategy using recursive feature elimination and information gain. Then, a cascaded long–short-term memory is used to improve attack classifications. This method achieved an accuracy of 98.96% and 99.30% on the NSL-KDD and UNSW-NB15 datasets, respectively, for performing binary classification. This research provides a practical strategy for improving the effectiveness and accuracy of intrusion detection in IoT networks.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3