A Dual-Attention Autoencoder Network for Efficient Recommendation System

Author:

Duan Chao,Sun Jianwen,Li Kaiqi,Li Qing

Abstract

Accelerated development of mobile networks and applications leads to the exponential expansion of resources, which causes problems such as trek and overload of information. One of the practical approaches to ease these problems is recommendation systems (RSs) that can provide individualized service. Video recommendation is one of the most critical recommendation services. However, achieving satisfactory recommendation service on the sparse data is difficult for video recommendation service. Moreover, the cold start problem further exacerbates the research challenge. Recent state-of-the-art works attempted to solve this problem by utilizing the user and item information from some other perspective. However, the significance of user and item information changes under different applications. This paper proposes an autoencoder model to improve recommendation efficiency by utilizing attribute information and implementing the proposed algorithm for video recommendation. In the proposed model, we first extract the user features and the video features by combining the user attribute and the video category information simultaneously. Then, we integrate the attention mechanism into the extracted features to generate the vital features. Finally, we incorporate the user and item potential factor to generate the probability matrix and defines the user-item rating matrix using the factorized probability matrix. Experimental results on two shared datasets demonstrates that the proposed model can effectively ameliorate video recommendation quality compared with the state-of-the-art methods.

Funder

National Natural Science Foundation of China

the National Key R&D Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3