Abstract
Crystallization is an important purification technique for solid products in a chemical laboratory. However, the correct selection of a solvent is important for the success of the procedure. In order to accelerate the solvent or solvent mixture search process, we offer an in silico alternative, i.e., a never previously demonstrated approach that can model the reaction mixture crystallization conditions which are invariant to the reaction type. The offered deep learning-based method is trained to directly predict the solvent labels used in the crystallization steps of the synthetic procedure. Our solvent label prediction task is a multi-label multi-class classification task during which the method must correctly choose one or several solvents from 13 possible examples. During the experimental investigation, we tested two multi-label classifiers (i.e., Feed-Forward and Long Short-Term Memory neural networks) applied on top of vectors. For the vectorization, we used two methods (i.e., extended-connectivity fingerprints and autoencoders) with various parameters. Our optimized technique was able to reach the accuracy of 0.870 ± 0.004 (which is 0.693 above the baseline) on the testing dataset. This allows us to assume that the proposed approach can help to accelerate manual R&D processes in chemical laboratories.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献