An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph
Author:
Affiliation:
1. Shanghai Jiao Tong University, Shanghai, China
2. Amazon Web Services, Shanghai, China
3. Amazon Web Services, Palo Alto, CA, USA
Funder
National Natural Science Foundation of China
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3394486.3403050
Reference36 articles.
1. Ting Chen and Yizhou Sun. 2017. Task-guided and path-augmented heterogeneous network embedding for author identification. In WSDM. Ting Chen and Yizhou Sun. 2017. Task-guided and path-augmented heterogeneous network embedding for author identification. In WSDM.
2. Yuxiao Dong Nitesh V Chawla and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for heterogeneous networks. In KDD. Yuxiao Dong Nitesh V Chawla and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for heterogeneous networks. In KDD.
3. Wei Feng and Jianyong Wang. 2012. Incorporating heterogeneous information for personalized tag recommendation in social tagging systems. In KDD. Wei Feng and Jianyong Wang. 2012. Incorporating heterogeneous information for personalized tag recommendation in social tagging systems. In KDD.
4. Tao-yang Fu Wang-Chien Lee and Zhen Lei. 2017. Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning. In CIKM. Tao-yang Fu Wang-Chien Lee and Zhen Lei. 2017. Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning. In CIKM.
5. Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In KDD. Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In KDD.
Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multipath-guided heterogeneous graph neural networks for sequential recommendation;Computer Speech & Language;2024-08
2. KGCNA: Knowledge Graph Collaborative Neighbor Awareness Network for Recommendation;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-08
3. Improving graph collaborative filtering with view explorer for social recommendation;Journal of Intelligent Information Systems;2024-06-26
4. Leveraging Hyperbolic Dynamic Neural Networks for Knowledge-Aware Recommendation;IEEE Transactions on Computational Social Systems;2024-06
5. Research on recommendation algorithm based on heterogeneous graph neural network;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3