Author:
Zhou Sang,Gao Huotao,Ren Fangyu
Abstract
Radar target characteristics need to be accurately extracted to enhance the role of high-frequency (HF) radar target recognition technology in modern radar, sea and air monitoring, and other applications. The pole characteristics of radar targets have become a mainstream research focus because of their inherent advantages for target recognition. However, existing pole extraction methods for complex targets generally have problems in early- and late-time responses aliasing and target information loss. To avoid this problem, this study proposes a new method to extract radar target poles based on the special particle swarm optimization algorithm (SPSO) and an autoregressive moving average (ARMA) model. This method, which does not involve the distinction between early-and late-time responses, is used to estimate an approximation of the entire scattering echo of the target. Then the parameters of the model are precisely optimized with the help of a particle swarm optimization algorithm combined with opposition-based learning and inertia weight decreasing. Strategy. Owing to the characteristics of the azimuth consistency of the target poles, a sliding window is used to calibrate the positions of multi-azimuth poles in the complex plane. The method was demonstrated to be feasible with good performance when it was applied to extract the pole features of ships at different azimuths in the high-frequency band.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province
the Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献