Joint Inversion of Evaporation Duct Based on Radar Sea Clutter and Target Echo Using Deep Learning

Author:

Ji Hanjie,Yin Bo,Zhang Jinpeng,Zhang Yushi

Abstract

Tropospheric duct is an anomalous atmospheric phenomenon over the sea surface that seriously affects the normal operation and performance evaluation of electromagnetic communication equipment at sea. Therefore, achieving precise sensing of tropospheric duct is of profound significance for the propagation of electromagnetic signals. The approach of inverting atmospheric refractivity from easily measurable radar sea clutter is also known as the refractivity from clutter (RFC) technique. However, inversion precision of the conventional RFC technique is low in the low-altitude evaporation duct environment. Due to the weak attenuation of the over-the-horizon target signal as it passes through the tropospheric duct, its strength is much stronger than that of sea clutter. Therefore, this study proposes a new method for the joint inversion of evaporation duct height (EDH) based on sea clutter and target echo by combining deep learning. By testing the inversion performance and noise immunity of the new joint inversion method, the experimental results show that the mean error RMSE and MAE of the new method proposed in this paper are reduced by 41.2% and 40.3%, respectively, compared with the conventional method in the EDH range from 0 to 40 m. In particular, the RMSE and MAE in the EDH range from 0 to 16.7 m are reduced by 54.2% and 56.4%, respectively, compared with the conventional method. It shows that the target signal is more sensitive to the lower evaporation duct, which obviously enhances the inversion precision of the lower evaporation duct and has effectively improved the weak practicality of the conventional RFC technique.

Funder

the National Natural Science Foundation of China

Key R&D Project of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3