Analysis and Research on Chaotic Dynamics of Evaporation Duct Height Time Series with Multiple Time Scales

Author:

Zhang QiORCID,Chen Xi,Yin Fuyu,Hong Fei

Abstract

The evaporation duct is a particular type of atmospheric structure that always appears on the open ocean. Predicting the evaporation duct height (EDH) accurately and in a timely manner is of great significance for the practical application of marine wireless communication equipment. Understanding the characteristics of EDH time series is an essential prerequisite for establishing an appropriate prediction model. Moreover, the sampling timescales of EDH data may influence the dynamic characteristics of the EDH time series as well. In this study, EDH time series datasets at three timescales, hourly, daily, and monthly, were constructed as the case study. Statistical methods, namely the augmented Dickey–Fuller test and Ljung–Box test, were adopted to verify the stationary and white noise characteristics of the EDH time series. Then, rescaled range analysis was applied to calculate the Hurst exponent to study the fractal characteristics of the EDH time series. An extensive analysis and discussion of the chaotic dynamics of the EDH time series are provided. From the perspective of nonlinear dynamics, the phase space was constructed from the time delay τ and embedding dimension m, which were calculated from the mutual information method and the Grassberger–Procaccia algorithm, respectively. The maximum Lyapunov exponent was also calculated by the small data volume method to explore the existence of chaos in the EDH time series. According to our analysis, the EDH time series are stationary and have a non-white noise characteristic. The Hurst exponents for all three timescales were greater than 0.5, indicating the predictability of the EDH time series. The phase space diagrams exhibited strange attractors in a well-defined region for all the timescales, suggesting that the evolution of the EDH time series can possibly be explained by deterministic chaos. All of the maximum Lyapunov exponents were positive, confirming the chaos in the EDH time series. Further, stronger chaotic characteristics were found for the finer-resolution time series than the coarser-resolution time series. This study provides a new perspective for scholars to understand the fluctuation principles of the evaporation duct at different timescales. The findings from this study also lay a theoretical and scientific foundation for the future application of chaotic prediction methods in the research on the evaporation duct.

Funder

National Natural Science Foundation of China

Southern Marine Science and Engineering Guangdong Laboratory

Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3