Full-Coupled Convolutional Transformer for Surface-Based Duct Refractivity Inversion

Author:

Wu JiajingORCID,Wei Zhiqiang,Zhang Jinpeng,Zhang Yushi,Jia Dongning,Yin Bo,Yu Yunchao

Abstract

A surface-based duct (SBD) is an abnormal atmospheric structure with a low probability of occurrence buta strong ability to trap electromagnetic waves. However, the existing research is based on the assumption that the range direction of the surface duct is homogeneous, which will lead to low productivity and large errors when applied in a real-marine environment. To alleviate these issues, we propose a framework for the inversion of inhomogeneous SBD M-profile based on a full-coupled convolutional Transformer (FCCT) deep learning network. We first designed a one-dimensional residual dilated causal convolution autoencoder to extract the feature representations from a high-dimension range direction inhomogeneous M-profile. Second, to improve efficiency and precision, we proposed a full-coupled convolutional Transformer (FCCT) that incorporated dilated causal convolutional layers to gain exponentially receptive field growth of the M-profile and help Transformer-like models improve the receptive field of each range direction inhomogeneous SBD M-profile information. We tested our proposed method performance on two sets of simulated sea clutter power data where the inversion of the simulated data reached 96.99% and 97.69%, which outperformed the existing baseline methods.

Funder

Key R & D Projects of Shandong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atmospheric duct propagation loss prediction based on time convolution network (TCN);2022 International Conference on Wireless Communications, Electrical Engineering and Automation (WCEEA);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3