Combined Prediction of Photovoltaic Power Based on Sparrow Search Algorithm Optimized Convolution Long and Short-Term Memory Hybrid Neural Network

Author:

Li ShunORCID,Yang Jun,Wu Fuzhang,Li RuiORCID,Rashed Ghamgeen Izat

Abstract

To address the problem of strong uncertainty in the high proportion of new energy output, an improved convolutional long- and short-term memory (CLSTM) hybrid neural network is proposed for PV power combination prediction. Firstly, considering the large impact of weather changes on PV power output, a fluctuation feature identification model is used to classify historical PV power series samples into slow weather change type and severe weather change type. Secondly, taking into account the multimodal characteristics of PV power output, an improved variational modal decomposition technique is used to adaptively determine the number of modal components, K, and decompose the two types of samples. Regarding the existence of the low-frequency steady state component and the high-frequency fluctuation component of PV power output, the high-frequency component is used to train the long- and short-term memory (LSTM) model and the low-frequency component is used to train the convolutional neural network (CNN) model. The improved sparrow search algorithm (SSA) is used to optimize the parameters of the LSTM and CNN models during the training process. Finally, the predicted component values of each model are superimposed and reconstructed to obtain PV power prediction values. The actual operation data of a PV plant in northern China were used for comparison and validation, and the experiments showed that the accuracy of the prediction results, based on the improved SSA to optimize the parameters of the CLSTM hybrid neural network for predicting PV output, was significantly better than that of the BP, CNN, LSTM single neural network prediction results, and of the prediction accuracy of the unoptimized CLSTM hybrid neural network. At the same time, compared with the above single neural network and unoptimized hybrid prediction model, the proposed method converged faster and was more adaptable to weather changes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference18 articles.

1. A hybrid model for photovoltaic power prediction of both convolution and long short-term memory neural networks optimized by genetic algorithm;Wang;Acta Phys. Sin.,2020

2. Digital twin model of photovoltaic power generation prediction based on LSTM and migration learning;Shi;Power Syst. Technol.,2021

3. Forecasting of PV plant output using hybrid wavelet‐based LSTM‐DNN structure model

4. Short-Term Solar Power Forecasting and Uncertainty Analysis Using Long and Short-Term Memory

5. Combination forecast of photovoltaic short-term output interval based on SOA optimization;Zhang;Acta Sol. Energy,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3