Affiliation:
1. School of Artifificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300401, China
Abstract
The current mainstream intrusion detection models often have a high false negative rate, significantly affecting intrusion detection systems’ (IDSs) practicability. To address this issue, we propose an intrusion detection model based on a multi-scale one-dimensional convolutional neural network module (MS1DCNN), an efficient channel attention module (ECA), and two bidirectional long short-term memory modules (BiLSTMs). The proposed hybrid MS1DCNN-ECA-BiLSTM model uses the MS1DCNN module to extract features with a different granularity from the input data and uses the ECA module to enhance the weight of important features. Finally, the model carries out sequence learning through two BiLSTM layers. We use the dung beetle optimizer (DBO) to optimize the hyperparameters in the model to obtain better classification results. Additionally, we use the synthetic minority oversampling technique (SMOTE) to fill several samples to reduce the local false negative rate. In this paper, we train and test the model using accurate network data from a water storage industrial control system. In the multi-classification experiment, the model’s accuracy was 97.04%, the precision was 97.17%, and the false negative rate was 2.95%; in the binary classification experiment, the accuracy and false negative rate were 99.30% and 0.7%. Compared with other mainstream methods, our model has a higher score. This study provides a new algorithm for the intrusion detection of industrial control systems.
Funder
Shijiazhuang Key R&D Plan
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献