Machine Learning Approaches for Short-Term Photovoltaic Power Forecasting

Author:

Radhi Shahad Mohammed1,Al-Majidi Sadeq D.1ORCID,Abbod Maysam F.2ORCID,Al-Raweshidy Hamed S.2ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, University of Misan, Amarah 62001, Iraq

2. Department of Electronic and Electrical Engineering, College of Engineering, Brunel University London, Uxbridge UB8 3PH, UK

Abstract

A photovoltaic (PV) power forecasting prediction is a crucial stage to utilize the stability, quality, and management of a hybrid power grid due to its dependency on weather conditions. In this paper, a short-term PV forecasting prediction model based on actual operational data collected from the PV experimental prototype installed at the engineering college of Misan University in Iraq is designed using various machine learning techniques. The collected data are initially classified into three diverse groups of atmosphere conditions—sunny, cloudy, and rainy meteorological cases—for various seasons. The data are taken for 3 min intervals to monitor the swift variations in PV power generation caused by atmospheric changes such as cloud movement or sudden changes in sunlight intensity. Then, an artificial neural network (ANN) technique is used based on the gray wolf optimization (GWO) and genetic algorithm (GA) as learning methods to enhance the prediction of PV energy by optimizing the number of hidden layers and neurons of the ANN model. The Python approach is used to design the forecasting prediction models based on four fitness functions: R2, MAE, RMSE, and MSE. The results suggest that the ANN model based on the GA algorithm accommodates the most accurate PV generation pattern in three different climatic condition tests, outperforming the conventional ANN and GWO-ANN forecasting models, as evidenced by the highest Pearson correlation coefficient values of 0.9574, 0.9347, and 0.8965 under sunny, cloudy, and rainy conditions, respectively.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3