Daily Photovoltaic Power Prediction Enhanced by Hybrid GWO-MLP, ALO-MLP and WOA-MLP Models Using Meteorological Information

Author:

Colak MedineORCID,Yesilbudak Mehmet,Bayindir RamazanORCID

Abstract

Solar energy is a safe, clean, environmentally-friendly and renewable energy source without any carbon emissions to the atmosphere. Therefore, there are many studies in the field of solar energy in order to obtain the maximum solar radiation during the day time, to estimate the amount of solar energy to be produced, and to increase the efficiency of solar energy systems. In this study, it was aimed to predict the daily photovoltaic power production using air temperature, relative humidity, total horizontal solar radiation and diffuse horizontal solar radiation parameters as multi-tupled inputs. For this purpose, grey wolf, ant lion and whale optimization algorithms were integrated to the multilayer perceptron. In addition, the effects of sigmoid, sinus and hyperbolic tangent activation functions on the prediction performance were analyzed in detail. As a result of overall accuracy indictors achieved, the grey wolf optimization algorithm-based multilayer perceptron model was found to be more successful and competitive for the daily photovoltaic power prediction. Furthermore, many meaningful patterns were revealed about the constructed models, input tuples and activation functions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3