Abstract
Vibration signal transmission plays a fundamental role in equipment prognostics and health management. However, long-term condition monitoring requires signal compression before transmission because of the high sampling frequency. In this paper, an efficient Bayesian compressive sensing algorithm is proposed. The contribution is explicitly decomposed into two components: a multitask scenario and a Laplace prior-based hierarchical model. This combination makes full use of the sparse promotion under Laplace priors and the correlation between sparse blocks to improve the efficiency. Moreover, a K-singular value decomposition (K-SVD) dictionary learning method is used to find the best sparse representation of the signal. Simulation results show that the Laplace prior-based reconstruction performs better than typical algorithms. The comparison between a fixed dictionary and learning dictionary also illustrates the advantage of the K-SVD method. Finally, a fault detection case of a reconstructed signal is analyzed. The effectiveness of the proposed method is validated by simulation and experimental tests.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献