Probability-Based Diagnostic Imaging of Fatigue Damage in Carbon Fiber Composites Using Sparse Representation of Lamb Waves

Author:

Duan Qiming12,Ye Bo12,Zou Yangkun3,Hua Rong12,Feng Jiqi12,Shi Xiaoxiao12

Affiliation:

1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

2. Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China

3. Faculty of Civil Aviation, Kunming University of Science and Technology, Kunming 650500, China

Abstract

Carbon fiber composites are commonly used in aerospace and other fields due to their excellent properties, and fatigue damage will occur in the process of service. Damage imaging can be performed using damage probability imaging methods to obtain the fatigue damage condition of carbon fiber composites. At present, the damage factor commonly used in the damage probability imaging algorithm has low contrast and poor anti-noise performance, which leads to artifacts in the imaging and misjudgment of the damaged area. Therefore, this paper proposes a fatigue damage probability imaging method for carbon fiber composite materials based on the sparse representation of Lamb wave signals. Based on constructing the Lamb wave dictionary, a fast block sparse Bayesian learning algorithm is used to represent the Lamb wave signals sparsely, and the definition of Lamb wave sparse representing the damage factor calculates the damage probability of the monitoring area and then images the fatigue damage of the carbon fiber composite materials. The imaging research was carried out using the fatigue monitoring experiment data of NASA’s carbon fiber composite materials. The results show that the proposed damage factor can clearly distinguish the damaged area from the undamaged area and has strong noise immunity. Compared with the energy damage factor and the cross-correlation damage factor, the error percentages are reduced by at least 58.63%, 28.11%, and 8.43% for signal-to-noise ratios of 6 dB, 3 dB, and 0.1 dB, respectively, after adding noise to the signal. The results can more accurately reflect the real location and area of fatigue damage in carbon fiber composites.

Funder

National Natural Science Foundation of China

The Young and Middle-Aged Academic and Technical Leaders Reserve Talents Project of Yunnan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3