Adaptive spectrum amplitude modulation method for rolling bearing fault frequency determination

Author:

Tu ZhaoyuORCID,Luo ZeyuORCID,Li MenghuiORCID,Wang JunORCID,Yang Zhi-XinORCID,Wang XianboORCID

Abstract

Abstract Signal preprocessing and feature extraction are decisive factors in determining the frequency of bearing faults. The presence of noise interference in the status signal of rolling bearings often hampers accurate fault detection. Although there are various methods for preprocessing vibration signals in rolling bearings, they need further improvement in terms of enhancing fault feature expression and localizing fault frequency bands. This limitation significantly hinders the accuracy of fault frequency determination. In order to enhance the representation of fault information on the frequency spectrum, this study proposes a combined approach that incorporates sparse stacked autoencoder (SSAE), wavelet packet decomposition (WPD), and adaptive spectrum amplitude modulation (ASAM). The resulting method is referred to as SSAE-WPD-ASAM. Firstly, the bearing vibration signal is decomposed by wavelet packet according to the scale and frequency band of the signal. On this basis, the signal reconstruction is realized based on the wavelet packet coefficient and energy distribution in different frequency bands. Secondly, for the whole life cycle signal, the reconstructed signal is self-encoded by sparse stacked autoencoder to achieve dimensionality reduction of the reconstructed signal. Then, the spare reconstructed signal is subjected to ASAM. Finally, through envelope demodulation, peak detection of fault frequency and empirical fault frequency comparison, the specific fault types of rolling bearings are determined. The proposed method is verified by theoretical simulation and three groups of practical experiments. The results show that the proposed method has a significant improvement in diagnostic efficiency and accuracy compared with traditional diagnostic methods.

Funder

Research Startup Funding from Hainan Institute of Zhejiang University

Sanya Science and Technology Innovation Project

Zhuhai UM Research Institute

International Science and Technology project of Guangzhou Development District

Zhuhai Science and Technology Innovation Bureau

Guangdong Science and Technology Department

Science and Technology Development Fund, Macau SAR

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3