Development of Real-Time Implementation of a Wind Power Generation System with Modular Multilevel Converters for Hardware in the Loop Simulation Using MATLAB/Simulink

Author:

Shin Dong-Cheol,Lee Dong-Myung

Abstract

In this study, we propose a wind power generation system model for operating modular multilevel converter (MMC) in a hardware-in-the-loop simulation (HILS) application. The application of the MMC is a system that connects wind power to a grid through high-voltage direct current (HVDC) in the form of back-to-back connected MMCs, whereas a HILS is a system used to test or develop hardware or a software algorithm with real time. A real-time operation model of the MMC is required to conduct a HILS experiment. Although some studies have introduced the HILS model of MMCs for grid connection using PSCAD/EMTDC, it is difficult to find a study in the literature on the model using Matlab/Simulink, which is widely used for power electronic simulation. Hence, in this paper, we propose a real-time implementation model employing a detailed equivalent model (DEM) using MATLAB/Simulink. The equivalent model of both wind power generation system and MMC are presented in this paper. In addition, we describe how to implement components such as a variable resistor that is not provided in the Simulink’s library. The feasibility of the proposed model is demonstrated with real-time operation of a wind power generation system.

Funder

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference29 articles.

1. Wind farm—A power source in future power systems

2. The offshore trend: Structural changes in the wind power sector

3. Combining the wind power generation system with energy storage equipment;Lu;IEEE Trans. Ind. Appl.,2009

4. A new direct torque control scheme of an induction motor using duty ratio modulation;Park;J. Elec. Eng. Tech.,2018

5. Comparative Evaluation of HVDC and HVAC Transmission Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3