Development of a Hardware-in-the-Loop Platform for the Validation of a Small-Scale Wind System Control Strategy

Author:

Martínez-Nolasco Juan1ORCID,Sámano-Ortega Víctor2ORCID,Botello-Álvarez José2,Padilla-Medina José3ORCID,Martínez-Nolasco Coral1ORCID,Bravo-Sánchez Micael2ORCID

Affiliation:

1. Departamento de Ingeniería Mecatrónica, Tecnológico Nacional de México, Instituto Tecnológico de Celaya, Celaya 38010, Mexico

2. Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México, Instituto Tecnológico de Celaya, Celaya 38010, Mexico

3. Departamento de Ingeniería Electrónica, Tecnológico Nacional de México, Instituto Tecnológico de Celaya, Celaya 38010, Mexico

Abstract

The use of renewable energies contributes to the goal of mitigating climate change by 2030. One of the fastest-growing renewable energy sources in recent years is wind power. Large wind generation systems have drawbacks that can be minimized using small wind systems and DC microgrids (DC-µGs). A wind system requires a control system to function correctly in different regions of its operating range. However, real-time analysis of a physical wind system may not be feasible. An alternative to counteract this disadvantage is using real-time hardware in the loop (HIL) simulation. This article describes the implementation of an HIL platform in an NI myRIO 1900 to evaluate the performance of control algorithms in a small wind system (SWS) that serves as a distributed generator for a DC-µG. In the case of an SWS, its implementation implies nonlinear behaviors and, therefore, nonlinear equations, and this paper shows a way to do it by distributing the computational work, using a high-level description language, and achieving good accuracy and latency with a student-oriented development kit. The platform reproduces, with an integration time of 10 µs, the response of the SWS composed of a 3.5 kW turbine with a fixed blade pitch angle and no gear transmission, a permanent magnet synchronous generator (PMSG), and a three-phase full-bridge AC/DC electronic power converter. The platform accuracy was validated by comparing its results against a software simulation. The compared variables were the PMSG currents in dq directions, the turbine’s angular speed, and the DC bus’s voltage. These comparisons showed mean absolute errors of 0.04 A, 1.9 A, 0.7 rad/s, and 9.5 V, respectively. The platform proved useful for validating the control algorithm, exhibiting the expected results in comparison with a lab-scale prototype using the same well-known control strategy. Using a well-known control strategy provides a solid reference to validate the platform.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3