Indirect Matrix Converter Hardware-in-the-Loop Semi-Physical Simulation Based on Latency-Free Decoupling

Author:

Sang Zhongqing12,Li Shaojie12,Huang Yuanyuan3,Gao Xin3,Qiao Rui12

Affiliation:

1. School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen 361024, China

2. Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control, Xiamen 361024, China

3. Nuclear Power Operations Research Institute (NPRI), Shanghai 200131, China

Abstract

In the process of hardware-in-the-loop simulations (HILs) of indirect matrix converters (IMCs), solving the mathematical models of complex multiswitching converter topologies has become a major problem. The conventional approach is to split the complex mathematical model into multiple serial subsystems; however, this inevitably produces delays in the simulation steps between different subsystems, leading to numerical oscillations. In this paper, the method of latency-free decoupling is adopted, which has no time-step delay between different subsystems, making each subsystem a parallel operation. This can improve the numerical stability of the simulations and can effectively reduce the step size of the real-time simulation and alleviate the problem of real-time simulation resource consumption. In this paper, we discuss in detail the modeling process of IMC hardware-in-the-loop simulations with Finite Control Set Model Predictive Control (FCS-MPC), and experimentally validate our method using the Speedgoat test platform, resulting in a simulation step size of less than 200 ns. The simulation results are compared with the results of Matlab’s Simpower power system, which allows us to evaluate the accuracy of our model.

Funder

Nuclear Power Operations Research Institute

Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3