Abstract
Two problems can cause control performance degradation on permanent magnet synchronous motor (PMSM) systems, namely, fluctuation of PMSM parameters and the time delay between current sampling and command value update. In order to reduce the influence of these problems, a new current-predictive control strategy is proposed in this article for medium- and high-speed PMSM. This strategy is based on the discrete mathematical model of PMSM. This new control strategy consists of two main steps: First, an integrator is applied to calculate current compensation value; second, the predictive current value is obtained through deadbeat-current predictive method. The stability of predictive control system is also proved in the article. With this deadbeat-current predictive control scheme, the real current can reach the desired value within one control-step. Based on this new current control method, Luenberger observer and phase-locked loop position tracker is applied in this article. Experimental results for 0.4 kW surface-mounted PMSM confirm the validity and excellent performance for parameters fluctuation of new current predictive control.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献