Inductance Estimation Based on Wavelet-GMDH for Sensorless Control of PMSM

Author:

Park Gwangmin1,Bae Junhyung2

Affiliation:

1. Vehicle Electrification R&D Center, Korea Automotive Technology Institute, Guji-myeon, Dalseong-gun, Daegu 43011, Republic of Korea

2. Department of Electrical Engineering, Daegu Catholic University, 13-13 Hayang-ro, Hayang-eup, Gyeongsan 38430, Republic of Korea

Abstract

In permanent magnet synchronous motor (PMSM) sensorless drive systems, the motor inductance is a crucial parameter for rotor position estimation. Variations in the motor current induce changes in the inductance, leading to core magnetic saturation and degradation in the accuracy of rotor position estimation. In systems with constant load torque, the saturated inductance remains constant. This inductance error causes a consistent error in rotor position estimation and some performance degradation, but it does not result in speed estimation errors. However, in systems with periodic load torque, the error in the saturated inductance varies, consequently causing fluctuations in both the estimated position and speed errors. Periodic speed errors complicate speed control and degrade the torque compensation performance. In this paper, we propose a wavelet denoising-group method of data handling (GMDH) based method for accurate inductance estimation in PMSM sensorless control systems with periodic load torque compensation. We present a method to analyze and filter the collected three-phase current signals of the PMSM using wavelet transformation and utilize the filtered results as inputs to GMDH for training. Additionally, a method for magnetic saturation compensation using the inductance parameter estimator is proposed to minimize periodic speed fluctuations and improve control accuracy. To replicate the load conditions and parameter variations equivalent to the actual system, experiments were conducted to measure the speed ripples, inductance variations, and torque component of the current. Finally, software simulation was performed to confirm the inductance estimation results and verify the proposed method by simulating load conditions equivalent to the experimental results.

Funder

Daegu Catholic University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3