An Improved Full-Speed Domain Sensorless Control Scheme for Permanent Magnet Synchronous Motor Based on Hybrid Position Observer and Disturbance Rejection Optimization

Author:

Huang Yi1ORCID,Zhao Mi1ORCID,Wang Yunong1ORCID,Zhang Hong1,Lu Min1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China

Abstract

A sensorless control algorithm not only reduces the cost of a permanent magnet synchronous motor (PMSM) system, but also broadens its application scope. Expanding speed threshold and enhancing dynamic performance are crucial aspects. To optimize the adaptability of observers and the immunity of the controller in a full-speed domain, an improved sensorless control scheme for a PMSM based on a hybrid position observer and disturbance compensation is proposed. Firstly, the precise detection of the initial position and the scheme of starting with the load at any position are proposed based on high-frequency rotation injection, magnetic pole direction calibration and square-wave high-frequency injection (HFI). Secondly, a higher-order sliding mode observer (HSMO) is designed to improve high-speed observation performance by introducing an extended electromotive force (EEMF). Correspondingly, a speed controller called PI plus is developed utilizing a reverse control algorithm and the observed disturbance quantity, which further enhances the system’s disturbance rejection capability. Subsequently, a linearly weighted observer switching method and a linear signal withdrawal scheme are proposed to suppress torque and speed oscillations in medium-speed threshold. Furthermore, a normalized linear extended state observer (LESO) is designed to enhance rotor information estimation accuracy and enable the observation of unknown disturbances in full-speed thresholds. Finally, the effectiveness of the proposed sensorless control system is tested through experiments involving variations in speed, load, and parameter. The experimental results indicate that the proposed sensorless strategy is capable of achieving a loaded start. The designed observer switching strategy and the scheme of injection signal withdrawal contribute to a smoother acceleration process. Furthermore, load variation test results at high-speed thresholds demonstrate that the proposed controller can reduce speed drop by 45 rpm compared to a traditional PI. Additionally, the results of parameter variation testing validate the observer’s robustness in the disturbances of ψf within the range of ±0.3 pu.

Funder

Natural Science Foundation of China

International Cooperation Projects of Shihezi University

key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affair

Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of Improved Gate Driver Circuit for Sensorless Permanent Magnet Synchronous Motor Control;World Electric Vehicle Journal;2024-03-09

2. Hybrid Observer Structure for Sensorless Control of IPMSM Machines;2024 4th International Conference on Smart Grid and Renewable Energy (SGRE);2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3