Abstract
In this paper, we present a unit-cell-based domain decomposition method (UC-DDM) for rapid and accurate simulation of predicting the parallel plate noise (PPN) suppression of a truncated electromagnetic bandgap (EBG) structure in high-speed printed circuit boards (PCBs). The proposed UC-DDM divides the analysis domain of the truncated EBG structure into UCs as sub-domains. Solving a sub-domain is based on a novel UC model, yielding an analytical expression for the impedance parameter (Z-parameter) of the UC. The novel UC model is derived using a spatial decomposition technique, which results in the modal decomposition of quasi-transverse electromagnetic (TEM) and transverse magnetic (TM) modes. In addition, we analytically derive a impedance-parameter recombination method (ZRM) to obtain the analytical solution of a finite EBG array from the sub-domain results. The proposed UC-DDM is verified through comparison with full-wave simulation results for various EBG arrays. Comparison between the UC-DDM and a full-wave simulation of a truncated EBG structure reveals that a substantial improvement in computation time with high accuracy is achieved. It is demonstrated that the simulation time of the proposed method is only 0.1% of that of a full-wave simulation without accuracy degradation.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献