Human Activity Recognition Based on an Efficient Neural Architecture Search Framework Using Evolutionary Multi-Objective Surrogate-Assisted Algorithms

Author:

Wang Xiaojuan,He MingshuORCID,Yang Liu,Wang Hui,Zhong Yun

Abstract

Human activity recognition (HAR) is a popular and challenging research topic driven by various applications. Deep learning methods have been used to improve HAR models’ accuracy and efficiency. However, this kind of method has a lot of manually adjusted parameters, which cost researchers a lot of time to train and test. So, it is challenging to design a suitable model. In this paper, we propose HARNAS, an efficient approach for automatic architecture search for HAR. Inspired by the popular multi-objective evolutionary algorithm, which has a strong capability in solving problems with multiple conflicting objectives, we set weighted f1-score, flops, and the number of parameters as objects. Furthermore, we use a surrogate model to select models with a high score from the large candidate set. Moreover, the chosen models are added to the training set of the surrogate model, which makes the surrogate model update along the search process. Our method avoids manually designing the network structure, and the experiment results demonstrate that it can reduce 40% training costs on both time and computing resources on the OPPORTUNITY dataset and 75% on the UniMiB-SHAR dataset. Additionally, we also prove the portability of the trained surrogate model and HAR model by transferring them from the training dataset to a new dataset.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Efficiency in HAR Models: NAS Meets Pruning;2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops);2024-03-11

2. Adaptive Multi-Scale Difference Graph Convolution Network for Skeleton-Based Action Recognition;Electronics;2023-06-28

3. Edge-Fog-Cloud Data Analysis for eHealth-IoT;International Journal of Online and Biomedical Engineering (iJOE);2023-06-13

4. Surrogate-Assisted Evolutionary Multiobjective Neural Architecture Search based on Transfer Stacking and Knowledge Distillation;IEEE Transactions on Evolutionary Computation;2023

5. Efficient Human Activity Recognition Using Lookup Table-Based Neural Architecture Search for Mobile Devices;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3