Edge-Fog-Cloud Data Analysis for eHealth-IoT

Author:

Zaoui ChaimaeORCID,Benabbou FaouziaORCID,Ettaoufik AbdelazizORCID

Abstract

Thanks to advancements in artificial intelligence and the Internet of Things (IoT), eHealth is becoming an increasingly attractive area for researchers. However, different challenges arise when sensor-generated information is stored and analyzed using cloud computing. Latency, response time, and security are critical concerns that require attention. Fog and Edge Computing technologies have emerged in response to the requirement for resources near the network edge where data is collected, to minimize cloud challenges. This paper aims to assess the effectiveness of Machine Learning (ML) and Deep Learning (DL) techniques when executed in Edge or Fog nodes within the eHealth data. We compared the most efficient baseline techniques from the state-of-the-art on three eHealth datasets: Human Activity Recognition (HAR), University of Milano Bicocca Smartphone-based Human Activity Recognition (UniMiB SHAR), and MIT-BIH Arrhythmia. The experiment showed that for the HAR dataset, the Support Vector Machines (SVM) model was the best performer among the ML techniques, with low processing time and an accuracy of 96%. In comparison, the K-Nearest Neighbors (KNN) performed 94.43, and 96%, respectively, for SHAR and MIT-BIH datasets. Among the DL techniques, the Convolutional Neural Network with Fourier (CNNF) model performed the best, with accuracies of 94.49% and 98.72% for HAR and MIT-BIH. In comparison, CNN achieved 96.90% for the SHAR dataset.  

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HAR Data Analysis: Unveiling the Potential of Federated CNN Models;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

2. Human Activity Recognition Using Convolutional Autoencoder and Advanced Preprocessing;International Journal of Online and Biomedical Engineering (iJOE);2024-03-04

3. Transforming Healthcare Data Management: A Blockchain-Based Cloud EHR System for Enhanced Security and Interoperability;International Journal of Online and Biomedical Engineering (iJOE);2024-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3